The Brucella MLVA-16 typing solution, developed by GenoScreen, enables health authorities to effectively monitor and control cases of brucellosis in both animals and humans as well as Ochrobactrum infections.

 

Conventional diagnostic techniques struggle to distinguish between Brucella or Ochrobactrum strains due to their close relatedness, leading to a suboptimal disease management1.

 

Brucella species are not known to survive long in open environments, their exhibit various host tropisms and varying levels of pathogenicity, which can result in brucellosis, a potentially fatal disease in both humans and animals. In contrast, Ochrobactrum species are commonly found in the environment, are less pathogenic and require a different treatment approach for successful eradication1.

 

The Brucella MLVA-16 typing solution offers a valuable tool for accurately identifying and distinguishing species within both the Brucella and Ochrobactrum genera. This tool enables the effective tracking and management of infections caused by these organisms.

 

 

The Brucella MLVA-16 Workflow

The Brucella MLVA-16 typing solution measures the length of 16 genetic loci with Variable Number of Tandem Repeats (VNTR) to perform a Multiple Loci VNTR Analysis (MLVA), and to assign to each result a MLVA numerical code specific to Brucella or Ochrobactrum species/strains2.
  • The Brucella MLVA-16 typing solution is available as a service and as a kit.
  • The kit contains 4 PCR mixes with fluorochrome-labeled primers, each amplifying 4 VNTR (16 VNTR in total) from purified DNA extracted.
  • A positive control is included in the kit to ensure the quality of the results obtained.
  • The PCR products are migrated on a capillary sequencer for fragment size determination.
  • Fragment sizes are converted bioinformatically into a succession of numbers of repeats for each VNTR, defining a MLVA numerical code specific to Brucella or Ochrobactrum species/strains.
  • The MLVA profile can be compared with a database that enables strain identification and tracking.

 

Brucellosis, a “One Health” challenge

Brucellosis (or Malta fever) is one of the most widespread animal disease transmissible to humans (zoonose) and the first cause of contamination in laboratories. The bacteria are transmitted to humans through direct contact with infected animals, ingestion of contaminated animal products or inhalation of aerosols3.

Animal brucellosis has a broad impact, affecting mammals across the board, with notable consequences in cattle, sheep, and goats. In the agricultural sector, the disease often leads to issues such as abortions, infertility, reduced milk production, resulting in diminished productivity and substantial economic losses for livestock farmers4.

Human brucellosis, on the other hand, presents a pressing public health issue. It manifests with severe and enduring flu-like symptoms that can, in some cases, progress into chronic forms. These chronic forms may entail various complications, including joint problems, cardiac ailments, neurological symptoms, and more3. In 2023, the incidence of human brucellosis is estimated at over 1.6 - 2.1 million cases per year5.

In contrast to high-income countries where effective "test-and-slaughter" policies have nearly eliminated brucellosis in infected herds, low- and middle-income countries continue to grapple with the burden of this disease. Moreover, the increasing global migrations of both humans and animals, along with more frequent interactions between them, has heightened the risk of Brucella infections. This risk includes now the emergence of newly discovered pathogenic strains that may elude existing surveillance programs, posing a worldwide threat to disease containment efforts3.

References:

  1. Moreno, Edgardo et al. (2023). “If You're Not Confused, You're Not Paying Attention: Ochrobactrum Is Not Brucella.” Journal of clinical microbiology 61(8). https://doi.org/10.1128/jcm.00438-23
  2. Al Dahouk, Sascha et al. (2007). “Evaluation of Brucella MLVA typing for human brucellosis.” Journal of microbiological methods 69(1) 137-45. https://doi.org/10.1016/j.mimet.2006.12.015
  3. https://www.who.int/news-room/fact-sheets/detail/brucellosis
  4. https://www.woah.org/en/disease/brucellosis/
  5. Laine, C. G., Johnson, V. E., Scott, H. M., & Arenas-Gamboa, A. M. (2023). Global Estimate of Human Brucellosis Incidence. Emerging infectious diseases, 29(9), 1789–1797. https://doi.org/10.3201/eid2909.230052
By continuing your visit to this site, you accept the use of statistics cookies